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1. INTRODUCTION 

 

  

1.1 Problem Statement 

Cloud abstraction, containerization, and orchestration: three pivotal concepts that have shaped how 

software is deployed and managed at scale. Our project is primarily an exercise in exploring these concepts 

as they pertain to private and hobbyist clouds. While consumer cloud offerings like Amazon Web Services, 

Azure, or Google Cloud offer services that abstract resource consumption but provide a medium to deploy 

applications, some use cases necessitate a locally-administered private cloud. Security concerns, legacy 

systems, existing capital, and need for more fine-grained control of infrastructure may mean a self-hosted 

cloud is the best option. In other scenarios, system administrators or developers may want to explore and 

learn the fundamentals of container-based clouds using real hardware, just as our team has done.  

Given a Turing Pi 2 cluster board with three compute nodes, our team has designed and 

implemented a proof-of-concept, self-hosted cloud which explores new, fundamental paradigms and 

principles. The cloud will support three main components: relational data storage, hierarchical file storage, 

and process management. Succinctly: databases, files, processes. The team will administer the cloud using 

continuous integration and deployment (CICD) via Gitlab pipelines and Gitlab runners. To facilitate 

distributed file storage while demonstrating replicability of the database and containerization of software, 

our team has deployed a custom-built software application stack which allows members to register and use 

the cloud for hierarchical file storage. This means the team must make additional efforts to provide an 

intuitive interface for users. Designing, provisioning, maintaining, and deploying on a private cloud has 

given the team an excellent opportunity to learn about private clouds and the principles used to create them. 

 

1.2 Intended Users and Uses 

The primary benefactors of our project are the project team members. This project provides an 

opportunity to research, design, and implement a cloud computing solution that may not otherwise be 

possible. Future groups may also benefit from the design and research we have done. Furthermore, 

individuals or hobbyists that wish to experiment or implement their own computing cluster on similar 

hardware may implement our solution or use it as a starting point for their own. Specifically, this technology 

could be useful to engineering teams that need to take advantage of a CI/CD workflow and Docker 

containers to dynamically provide server computation for handling client requests. Additionally, the usage 

of a low-power and scalable hardware platform provides a use case for a company to own in-house compute 

servers. A data-sensitive user would also take advantage of this in-house, locally hosted server and 

workflow platform as it replicates the advantages of cloud-based scalability with the addition of having 

absolute control over the implementation in terms of security and accessibility. Small business owners could 

make use of a similar platform and design to either run a handful of low-resource-intensive programs or 

test out the concept of a private cloud based on scalable containers. 
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2. REVISED DESIGN 

 

  

2.1  Requirements 

Hardware: 

• The private cloud will be deployed atop a Turing Pi 2 mainboard 

• The system will be able to support between 1-4 compute modules at any time 

Cloud and Containerization: 

• The system will support containerized applications via Docker 

• The system will support container orchestration across all nodes via Kubernetes 

• The system will be able to scale containerized applications across all clusters according to their 

resource needs 

• The system will have a web API to deploy scalable containerized applications to the private cloud 

• The system will expose API endpoints which support blob storage 

• At least 90% of the API endpoints will be supported by a served website which allows users to 

perform all major actions (e.g. upload, download, deploy containers, monitor resource usage) 

• The website will be visually simple and aesthetically pleasing, using modern web components and 

UI principles 

• The file storage will be distributed across all compute nodes 

• The system will have robust monitoring via its interface which reports functional status (e.g. 

nominal, process failures) and resource utilization 

• The system will support a containerized video streaming application 

• The system will show performance improvement for scalable containerized applications as more 

compute clusters are added 

 

2.2 Engineering Standards 

• NIST SP 800-145   The NIST Definition of Cloud Computing  

• ISO/IEC 19941:2017   Cloud Computing Interoperability 

• ISO/IEC 19944-1:2020   Cloud Computing and Distributed Platforms 

• ISO/IEC/IEEE 90003:2018   Software Engineering 
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2.3 Security Concerns and Countermeasures 

The main security concerns for our project are appropriate authentication and authorization—we 

must ensure both the cloud and users’ data are protected. In order to do this, we utilize a reverse proxy that 

directs all requests through our authentication backend. Once the user is authenticated and authorized, the 

request is forwarded to the necessary service or handled by the backend itself, if appropriate. before 

handling them and serving content. 

In order to protect the cloud itself, we make use of Kuberenetes’s built-in web API. This utilizes a 

token- and role-based authentication and authorization scheme, similar to our backend. By only 

provisioning tokens to developers which need access to deploy resources, we can limit direct access to the 

cloud. Indirect access to deploy is granted via our Gitlab runners on the cloud, which can apply manifests 

on behalf of users during pipeline runs. 

 

2.4 Design Evolution 

2.4.1 Initial Design 

Our system model and diagram consist of a layered design in which resources are translated to user 

applications through various steps, designs, and abstractions. At the bottom, a Turing Pi 2 mainboard, which 

provides us with networking and interconnect for compute nodes, three Raspberry Pi Compute Module 4s 

(CM4s). The Turing Pi 2 was designed as a minimal block for a consumer-grade edge infrastructure that is 

cost-effective. The Turing Pi 2’s onboard management controller and network switch allows for the CM4s 

to work in tandem, pooling their resources so that they can be managed via a singular abstraction wherein 

Kubernetes orchestrates containerized workloads across devices. To allow software to be deployed, an 

interface layer making use of Django is implemented. Applications already containerized with docker can 

use this API as a medium to be transferred downwards and orchestrated with Kubernetes. For example, 

while the core functionality of uploading a file to a system can be implemented in a variety of ways, an 

initial POST request to the API which submits the manifest or file to be uploaded is the fundamental point 

of interaction for uploading. The uploaded container is then handed off to Kubernetes amongst the three 

Pis in an optimized and load-balanced manner, or transferred to storage via a Docker volume. 

 

2.4.2 Design Iteration 1 

The largest change in-between designs 0 and 1 was the inclusion of the distributed file system 

(DFS). Originally, we had planned to use built-in Linux programs in conjunction with Docker volumes for 

persistent storage. However, in order to balance reads/writes as well as stored objects across all three 

compute nodes and their respective storage, we opted to instead use a distributed file system. This provides 

many benefits, foremost being replication and load balancing. The DFS can manage the concurrent reads 

and writes to the files system in order to ensure the integrity of files across all compute nodes and additional 



 

 5 

storage. This iteration also included the usage of S3 (simple storage service) APIs for interacting with the 

DFS. In Iteration 1, we planned to use SeaweedFS, an open-source, community-based distributed file store.  

 

2.4.3 Design Iteration 2 

The largest design iteration came early in the implementation phase. There were three major 

additions during this time: database replication, reverse proxying, and a private container registry. 

Relational data is vital for almost all business-related applications. So, it makes sense that one of 

the main tenets of a cloud is the reliability of its relational data. Database replication ensures that when one 

node fails, users’ data is not just safe, but accessible. Using Kubegres, a Kubernetes operator for Postgres, 

we’re able to maintain three separate instances of the database at each point in time: one primary instance 

and two replicated instances. Redundancy is guaranteed via the replicas, and accessibility is guaranteed via 

a mechanism that promotes a replica to become the primary database when primary failure occurs. 

The next major change came to the ingress architecture. While it’s possible to serve the frontend 

web page via the API, we instead opted to use software purpose-built to handle and route large amounts of 

traffic. NGINX, a popular reverse proxy with great containerization support, was chosen to serve as our 

reverse proxy that handles forwarding requests to the backend, serving users’ files (after authentication with 

the backend), and serving the static files for the web page. We have 3 replicas of NGINX distributed across 

the cluster; requests are routed to a particular instance of NGINX via a Kubernetes ingress controller and 

load balancer. Reverse proxying adds much greater flexibility in our design, letting us change proxy routes 

and configurations with ease. 

As the number of custom-built containers grew, we needed a reliable, private storage solution for 

the images. While public container registries like DockerHub do exist and are widely used, we decided it 

would be better to integrate with GitLab’s private container registry service. With this, we couple our 

deployment pipeline, cluster, and the images used in the former together with privacy in mind. 

 
3. IMPLEMENTATION DETAILS 

 

  

3.1 Detailed Design 

Our design is constituted by three major parts: 

• Infrastructure: The major hardware and software components of the system and how they interact 

• Interface: How users, developers, and administrators interact with the system 

• Pipeline: How the system is managed over time via Gitlab integrations, continuous integration, 

continuous deployment 
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3.1.1 Infrastructure Design 

Our design diagram is included below for reference. In our infrastructure, we work logically 

upwards in increasingly higher levels of abstraction. When considering the design, it’s important to 

remember the three users of the system: (a) application users, who need to interact with services on the 

cluster and store data, (b) developers who need to deploy applications and infrastructure to the cluster, and 

(c) system administrators, who need to ensure system uptime and availability for application users and 

developers. 

 
Fig. 1 High-level design diagram of the cloud system. Higher levels of abstraction devolve into specific hardware 

as the diagram moves from top to bottom. Each main user of the cloud is also shown. 

Turing Pi 2 Mainboard: 

At the very bottom is the Turing Pi 2 Mainboard, which contains an Allwinner T113-S3 system-on-

chip (SOC). This chip runs an embedded Linux operating system that is used to manage the onboard switch 

and allow low-level configuration of the interconnects of the Raspberry Pi Compute Module 4s. We’re able 

to remotely login to this board management controller (BMC) when necessary to configure the network 

bridge and switch. 

Raspberry Pi Compute Module 4s: 

The main workhorses of our private cloud are three Raspberry Pi Compute Module 4s. Each 

contains 4 GB of memory and quad-core ARM processors. We’ve allocated 64GB SD cards to each for 

operating system use, and 500GB solid-state drives (SSDs) to each for the cloud’s distributed file storage. 

The devices are fitted to carrier boards which allow them to slot into the Turing Pi 2 mainboard. The Turing 

Pi board interfaces the compute modules to the SATA SSDs through SATA headers for one module, and 

mini-PCIe cards for the other two compute modules that we’re using. 

Cloud K8s Orchestration and Abstraction Layer: 
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At the heart of our private cloud is the software abstraction layer that turns discrete computers into 

a singular compute cluster. We specifically use K3s, a Kubernetes (K8s) implementation built for 

lightweight deployments. Because of networking constraints, we make use of an air-gapped installation in 

which necessary binaries are directly placed on the cluster (as opposed to located in repositories online). 

As mentioned before, two parties must be able to interact at this level in the system: cloud 

administrators and cloud developers. Administrators can provision supporting, vital infrastructure via the 

Kubernetes API server. Tokens are manually provisioned to each administrator as need be, allowing them 

to access the API server with role-based permissions so they can interact with least-privilege permissions. 

Cloud developers, on the other hand, interact with cloud via Gitlab pipelines. A Gitlab runner agent is 

deployed on the cluster, accepting jobs from developers’ repositories and enabling them to deploy their 

infrastructure configuration and apps. 

Cloud API: 

Allowing users to access the cloud via the API server is superfluous and certainly doesn’t adhere 

to best security practices. Instead, we offer a more user-friendly backend that lives on top of the cloud 

abstraction layer. Using Django and the Django Rest Framework, we’ve developed an application that can 

interact with other components on the cloud, including the distributed file store, relational database, the 

reverse proxy, and any other deployed apps. 

The main interfaces for the API involve the two fundamental building blocks of cloud: users and 

their data. The API functions as the sole method of authentication and authorization on the cloud—users 

wanting to access any part of the cloud will interact first with the API to authenticate and authorize. 

Afterwards, the request is re-routed to the intended destination. For example, if a file is requested, the API 

must first authenticate and authorize the user before directing the reverse proxy (NGINX) to serve the file. 

All other components of the cloud (the distributed file store, database, etc.) are only available internally, 

ensuring this order of operations. 

We utilize Django’s user management tools for password hashing, permission checking, and 

session/token management.  The backing database and file store, Kubegres and Rook-Ceph, are discussed 

next. 

Relational Database: 

For relational data on the cloud, we’ve provisioned Kubegres, a Postgres operator for Kubernetes. 

The relational data on the cloud is sensitive and vital to operation, so maintaining security and redundancy 

is key. 

For security, we utilize Kubernetes’s secrets, which facilitate what the name implies: secure, 

protected secrets for infrastructure passwords, tokens, and keys. Only those with direct administration 

access to the cluster are feasibly privy to these. 

Redundancy is the reason we chose Kubegres over other options. While we considered a host-based 

Postgres database in the beginning, we knew we wanted replication across the cluster to ensure that data 

was accessible and intact even in the case of node failure. Kubegres guarantees this. We make use of a 

configuration which has one primary and two replica databases. The replicas can be used for reads, while 

the primary can be used for reads and writes. If the primary were to fail, Kubegres promotes a replica to 
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become the primary. Thus, we can almost always guarantee uptime of the database, which means uptime 

of our main authentication and authorization schemes. 

Distributed File System: 

Persistent volumes and persistent volume claims are the basic way of sharing data amongst 

processes on Kubernetes. However, manually provisioning these is error-prone and leaves room for 

downtime, less scalability, less redundancy, and overall less reliability. Seeing as file storage was at the 

heart of our application and cloud, we made use of Ceph, a distributed file system which ensures all the 

properties of data we care about. If data is lost, Ceph can use advanced self-healing techniques to recover 

and repopulate the data onto healthy nodes. If more storage is added, Ceph can scale appropriately to 

consume it and balance data across it. And perhaps most importantly, it’s performant. While it’s certainly 

the “heaviest” application on our cluster, it still performs all these tasks with minimal memory and CPU 

utilization. 

Actually, managing Ceph, on the other hand, can still be difficult and cumbersome. Ceph has 

seemingly billions of knobs and limited Kubernetes integration. To make it a more seamless part of our 

infrastructure, we use Rook, an orchestrator for Ceph (referred to together as Rook-Ceph). Rook reduces 

the complexity of deploying Ceph properly to a Kubernetes cluster.  

The interaction with the DFS from the other services’ point of view is simple: we’re able to 

provision parts of the DFS via persistent volumes, then containers (such as our backend or other deployed 

apps) can mount these persistent volumes using persistent volume claims. This allows developers to access 

files in the way they know best in the format they prefer (as determined by their container). 

Reverse Proxy: 

Having processes and data deployed on a device is without value unless they can be accessed by 

users. Combined with a Kubernetes ingress controller and load balancer, our reverse proxy routes 

connections to the relevant processes.  

The first point of contact for our cloud is the Kubernetes ingress controller. Our configuration uses 

this as a load balancer, routing and balancing requests across the cluster. Each of these requests gets sent to 

one of three instances of our reverse proxy. We utilize NGINX, a popular choice for cloud-based reverse 

proxying. Any of the three instances may handle the request. The request is forwarded to the appropriate 

service. In almost all cases, this is the Cloud API for authentication and authorization purposes. However, 

some resources may be accessed unprotected—the static website files, for example, may be requested and 

used by anyone. 

It's important to note that NGINX doesn’t just route users’ incoming requests. After authentication 

and authorization, NGINX may need to reroute requests based on the X-Accel-Redirect header set 

by the Cloud API server. This is how, for example, large files are served—the Cloud API server validates 

access to the resource and directs NGINX to serve it (since NGINX is much more suitable and performant 

for these tasks than Django). 

Served Interface: 
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Most users likely don’t want to interact with the cloud solely through API requests. For this reason, 

we’ve provided a web page which facilitates interaction with the API through a user interface. To build this 

interface, we used the React framework. We aimed to expose our file-handling endpoints through an 

interface that would feel familiar to users and seem akin to software like Windows Explorer or MacOS 

Finder as well as sites like Google Drive, Box, and Microsoft OneDrive. 

 

3.1.2 Interface Design 

The purpose of our interface is the abstraction of the underlying layers of software and hardware. 

It should be easily accessible and intuitive to use, so the user interface takes the form of a React based 

webapp with lightweight design elements pulled from common file system interfaces. 

 

Fig. 2 Final Screen Navigation Layout 
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Good principles should be followed for the design, including: 

- A single page web-app-like design 

- Responsiveness 

- Excellent feedback for user actions 

 

Fig. 3 Final Screen Design 

To meet these criteria, we adhered to the precedent set by other file managers including a list-like 

visual of files in the current directory. Buttons are prominent for the actions users are most interested in: 

uploading, downloading, and viewing files. We attempted to eliminate any visual fluff which may otherwise 

bog down the reactiveness of the page or take focus away from the essential parts of the design. 

 

3.1.3 Pipeline Design 

Maintaining consistency and coordination between developers’ workflows, automated testing, and 

deployment is essential for a private cloud. Analogous to how a Kubernetes cluster has a “control plane” 
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node which manages configuration for worker nodes, we make use of a “controlling” Gitlab project and 

pipeline that helps keep the cluster provisioned with the latest changes at all times. 

 

Fig. 4 High-level flow of the continuous integration and delivery pipeline. 

The pipeline first comes into play when merge requests are created on Gitlab. Before changes are 

merged into the main branch, they must be vetted. This includes a build and test process. Building, in-and-

of itself, is a quick way to ensure the software is valid—there is no point in attempting to test or deploy 

software that will not build. At this point, we compile the frontend from React into static files. These files 

are then used in the next part of the build: constructing the NGINX Docker image. Our NGINX docker 

image contains both configuration of the reverse proxy as well as static files which must be served. These 

static files for the frontend are included in this build. In parallel, the backend is also built into a Docker 

image. If either build fails, the pipeline is halted and a failure is indicated. 

Following the build stage, testing is conducted. We’ve written a suite of tests for each major 

component, and this is further described in Section 4: Testing. It is as this point we ensure regression hasn’t 

occurred with the new changes. 

Upon success of earlier pipeline stages, administrators have the option of deploying the most recent 

build to the hardware. At this point, the Gitlab runner will apply or reapply all infrastructure manifests to 

the cluster. This ensures infrastructure matches the configuration specified within the Git repository. The 

runner will also issue rolling restarts. These restarts prompt the backend and NGINX deployments to pull 
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the latest Docker images from where they are safely stored within the Gitlab container registry. This way, 

all containers running on the cloud platform are fresh and never stale. 

 

3.2 Description of Functionality  

When deployed, users will be able to use the cloud for hierarchical and relational data store. What 

may be a simple button press for the user translates into an intricate interweaving of requests to different 

parts of the infrastructure. 

 
Fig. 5 Functional diagram which illustrates how an end user can upload and receive relational and/or hierarchical 

data. 

The request’s journey begins at the served web page. When a user interacts with an element of the 

webpage such as a button (1),  a RESTful request is sent to the cluster at its designated URL (2). Here, the 

Kubernetes ingress controller begins handling the request, employing Kubernetes’ algorithms for selecting 

a node to handle the request. From there, the request is passed on to an instance of the reverse proxy (3). 

Note that at any point in this process, it’s possible that requests may jump from compute node to compute 

node based on a variety of factors.  

The reverse proxy inspects the request. If the request is asking for public, static files, the proxy is 

capable of serving them directly. This is how the user would acquire the files to render the website in the 

first place. If the request is destined for the API, the reverse proxy forwards it to the backend (4). At this 
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point, the backend may need to authenticate and authorize the user, depending on the nature of the request 

(5). A request to login, for example, requires authentication. A request for private files also needs 

authorization. 

After the request has been deemed valid, the backend must construct a response. Often, the response 

is just a status code (e.g. 200 OK). Other times, the request must include relational data (such as what files 

a user has access to) which must be queried from the database. If this is the extent of the response, the 

backend may respond directly to the client. In other cases, we must revisit the reverse proxy. Serving files, 

for example, is better handled by a reverse proxy than an API. For these responses, the backend makes use 

of a redirection back to the reverse proxy, indicating that the reverse proxy should intercept and serve the 

requested resource (7, 8). 

Whichever route is taken, the user’s web page will receive a served response, which it can then 

render a feedback and visualization for. (9, 10). 

 

3.3 Notes on Implementation 

While we’ve worked around any hurdles that have arisen, we’d like to note some difficulties which 

may be referenced by future teams. These may also add context to certain design decisions. 

• The network settings assigned to our devices prohibited reaching some sites. This prevented 

downloading K3s directly, pulling Helm charts for Gitlab Kubernetes agents, and pulling some 

images/software from Github or Gitlab repositories. To circumvent this, we generally adapted an 

“air-gapped” approach in which necessary installation materials were copied over and installed 

manually. 

• Additionally, our network settings made building Docker images from within Docker containers 

on the machine difficult. We opted to use shell runners for our pipeline instead, allowing us to 

manage permissions and network settings more easily on the host machine. 

• Gitlab’s AgentK, its operator which allows a more complete Kubernetes integration, is supposed 

to be multiplatform. However, the latest images which are compatible with the Electrical and 

Computer Engineering Department’s Gitlab instance do not support the ARM64 architecture (the 

architecture of the Raspberry Pi Compute Module 4s). This prevented us from using Gitlab’s 

repository integration with Kubernetes. To work around this, we again used shell runners located 

on the cluster which could interact with the Kubernetes deployment. 

 
4. TESTING 

 

  

4.1 Process 

We have two major designs which must be under test: the private cloud stack, and the developed 

software application.  
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Infrastructure Testing 

We perform unit tests to ensure baseline requirements are met, functional tests to measure 

throughput, monitoring to measure workloads and utilization, and intermittent health checks to test 

availability. Initially, we also performed tests of the physical hardware. After installing the storage adapters 

and configuring the network, we made sure that both storage and internet were healthy. 

Unit testing of the cloud API occurs within the CICD pipeline. We make use of Django’ Rest 

Framework’s built-in testing framework which allows for simulating requests in addition to regular testing 

of backing user and file models. We maintain 85% code coverage with these unit tests. If each unit test 

passes, deployment can continue. This helps prevent regression bugs, too; changes which break the API 

will cause previously-written tests to fail.  

Deployment via the pipeline helps catch integration errors, too. If, for example, the frontend build 

cannot be integrated with the NGINX proxy image, the build will fail. The other way in which we check 

both integration, availability, and resource utilization is intermittent health checks. Our infrastructure has 

plenty of interconnected and moving parts, we use several dashboards and tools which allow us to validate 

that the platform is not under duress, healthy, and integrated. Foremost are Grafana and Prometheus, 

respectively dashboard and monitoring frameworks. Prometheus allows us to scrape data from each major 

infrastructural component using hooks they’ve exposed. Grafana helps us visualize that data with concise 

dashboards. With both combined, we’re able to see CPU and memory utilization broken down by each 

process over time. Additionally, we can receive alerts for system failures. With the above, we can maintain 

good knowledge of the integration and uptime of our cloud. 

Frontend Testing 

The frontend usability was tested by putting a variety of people with no experience with the design 

in control of the webapp, then asking them to perform a series of basic tasks. All test subjects were able to 

complete all given tasks.  

 

4.2 Results 

To observe best-case performance testing of the overall design, we first tested transfer speeds of 

the DFS. Since the DFS is designed to be hardware-abstracted, somewhat like RAID, we only needed to 

consider the existence of the file somewhere in the DFS, opposed to being in a specific physical drive. 

Additionally, the theoretical best-case transfer speed of the DFS was to either the SD-cards, or to the 

ethernet interface. The results of the SD-card testing to the DFS produced about a 4.5 minute duration to 

transfer one gigabyte of raw random data. This translated to about 3.5 megabytes per second, which is 

slower than the physical transfer speed of either the SD-card or the SATA SSDs. The slowdown is inevitable 

with the overhead produced by the DFS, though the degree was surprising. Additionally, testing a copy 

speed of a file within the DFS to the DFS, produced a transfer speed of 41.5 megabytes per second, a 

significant speedup than interfacing to the SD-cards. This indicates that a DFS interface, offering a 

professional storage design, provides a speedup over direct SD-card management. 
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Further measurements of the above tests revealed that the Raspberry Pi Compute Modules were 

performing below ratings due to them being insufficiently cooled. Kubernetes opts to pin most of the load 

to the first core on the control plane, making it a possible bottleneck to job distribution, and is more 

critical to be performant than the other nodes. When CPU-intensive tasks are ran on any node, the 

compute modules often peak at 85 degrees Celsius and thermal throttle, reducing computational 

performance. The obvious performance metric is of parallel computing and file serving per Watt. The 

cluster averages 20 Watts under moderate computational load, with a peak around 25 Watts. This 

indicates that any computation on the cluster only uses a fraction of the power that a typical PC or PC-

based server, producing highly-efficient distributed computation. 

 

5.1 Public health, safety, and welfare:  

While our design isn’t intended to be consumed or affected by the general public, many private 

clouds are backing industries which are vital to public health, safety, and welfare. In fact, most private 

clouds are created because of the sensitivity to these concerns. It’d be important in those scenarios to 

consider things like distributed file store encryption, certificates for HTTPS, and potentially even air-

gapping entirely and isolating from the network. 

 

5.2 Global, cultural, and social:   

As our global society shifts to a more “cloud-first” mindset, it’s important to understand what 

clouds are, i.e. they are not magic. While our project doesn’t reach lengths that deem it impactful globally, 

culturally, or socially, the concepts it works certainly do. Making sure developers know the societal impacts 

of amassing data and the importance of redundancy is a key part of making clouds work for the common 

good. With the increasing needs for affordable and secure computing resources, this project has shown that 

the Turing Pi platform makes server-style computing much more accessible than what would otherwise be 

exclusive to large enterprises, satisfying the social needs of our more interconnected world. 

 

5.3 Environmental:  

As noted in our testing, our private cloud doesn’t consume much energy—our environmental 

impact is limited. This is an important consideration for clouds. More headlines appear by the day with 

concerns around the amount of energy going toward (and therefore often environmental destruction as a 

result of) large-scale distributed computing. When possible, it’s worth considering the option to move away 

from large, power-hungry servers and toward smaller, ad-hoc devices like the Turing Pi to conserve. 

 

5.4 Economic:  

This is a relatively affordable product for users to obtain. The only things they need to purchase are 

the hardware components. Typically, public cloud providers lure customers with pricing that scales. With 
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Turing Pi, you know exactly the cost of your cloud, forever. The only variable cost over time is the cost of 

energy. Additionally, the Turing Pi offers a ready-to-use platform, which a user could opt to design themself, 

for additional cost savings. To be more detailed, the Turing Pi platform supports up to four compute 

modules of various kinds, each with different cost versus performance. The overall platform pales in 

comparison to a typical PC-style server, making it a much more economical option for small system projects, 

with the intent of scalability easily attainable. 

 
6. CONCLUSIONS 

 

  

6.1 Review Progress 

 Overall, we made great progress this semester and accomplished nearly all of what we set out to 

do. We created an efficient private cloud with robust redundancy in case of failure, replication, and 

resilience. The infrastructure allows for the key tenets of a cloud: relational data storage, hierarchical object 

storage, process containerization, and hardware abstraction. By the end of the semester, we’ve created a 

very tight development cycle that makes it simple for developers to simulate the cloud environment before 

deploying with a hands-free pipeline. 

 We did make several iterations along the way which included revisions of the requirements—these 

mostly came about because of our team learning more about best practices using the technologies and 

principles the project is based on. For example, while we had initially set out to allow users to upload 

containers via the web API, we opted to instead route these actions through the Kubernetes API server 

instead; this, as we learned, is a security best practice. While we had hoped to address authorization and 

encryption further, we instead opted to focus on the fundamental tenets noted above (circumventing issues 

with obtaining SSL certificates, requesting network settings changes for our devices, etc.). 

6.2 Design Value 

One of the key goals for our project was for our team to learn about and explore cloud computing 

and its underlying infrastructure. Our design brings value to this goal by displaying our exploration and 

tying in several fundamental aspects of cloud computing, such as running a program in a containerized 

environment. Our project also brings value to our intended user by providing an easy step-by-step guide on 

how to create a cloud computing environment. Our design allows people to create their own file storage 

system, that is fast, reliable, and secure. A user could also develop their own cloud application using the 

infrastructure that we installed onto the Turing Pi 2. 

6.3 Potential Next Steps 

There are near-limitless directions in which a further group could take the project. Our hardware 

platform was the Turing Pi 2, but future groups could take the infrastructure further to the edge using a 

cyber-physical system. Integrating sensors and actuators using either Raspberry Pis or other devices could 

enable the cloud to reach new use cases and users. 

If future teams would like to continue in a more web-oriented direction, it’d be wise to obtain 

certificates and set DNS records appropriately for the cloud. Ensuring requests are load balanced at the 
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DNS resolution level could help reduce uneven strain on the devices. This then gives the project more 

options at the backend level. Browsers are more keen to cooperate with the backend’s request to store 

session and authorization cookies when a TLS connection is used. 

From a hardware point of view, there’s always room for more compute power. Clusters are often 

used for things like training machine learning models. Adding more compute nodes, cooling, storage, and 

memory could allow the cloud to perform more data-intensive tasks. Deploying the same infrastructure on 

rack-mounted servers obtained from surplus could be interesting. If a non-ARM64 architecture is used, 

there is also a good chance for greater support for Gitlab’s official Kubernetes integration. Lastly, 

Dockerizing the pipeline and having runners run within containers could simplify deployment. 

 
APPENDIX 1: OPERATIONS MANUAL 

 

  
Our team maintains the approach that the usage of the software should accompany the software 

itself. We maintain READMEs which instruct the user on building and applying the infrastructure 

throughout the relevant parts of the repository. We direct those wishing to use the cloud infrastructure to 

our software repository (see Appendix 4). 

For those wishing to utilize the deployed web page, we direct them to our demonstration video, 

which walks through the common usage of the application. 

 
APPENDIX 2: DESIGN ITERATIONS 

 

  
Accompanying Section 2.4, we have provided the diagrams for the design revision prevented to the 

faculty panel before beginning the implementation page of our design. 
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Fig. 6 An early concept for webapp views with expected stored values and intended functionality. 

 
Fig. 7 Plan for directory view layout. 
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Fig. 8 Final front-end directory view. 

 

 
APPENDIX 3: OTHER CONSIDERATIONS 

 

  
We would like to thank Dr. Akhilesh Tyagi for his advice and support throughout the past two 

semesters. In addition, we’d like to extend a thank you to Iowa State’s Electronics and Technology Group 

(ETG), who was always more than willing to help us acquire equipment and. 

 
APPENDIX 4: SOFTWARE 

 

  
We use Gitlab to host our software repository. This is available from Iowa State’s network at:  

http://git.ece.iastate.edu/sd/sdmay24-03 

The authors do not maintain a publicly-available mirror of this repository. Please reach out to the 

team at sdmay24-03@iastate.edu to request a copy of the software. 

http://git.ece.iastate.edu/sd/sdmay24-03
mailto:sdmay24-03@iastate.edu

	AN EXPLORATION OF
	TURING PI-BASED EDGE CLOUD
	1.1 Problem Statement
	1.2 Intended Users and Uses
	2.1  Requirements
	Hardware:
	Cloud and Containerization:

	2.2 Engineering Standards
	2.3 Security Concerns and Countermeasures
	2.4 Design Evolution
	2.4.1 Initial Design
	2.4.2 Design Iteration 1
	2.4.3 Design Iteration 2

	3.1 Detailed Design
	3.1.1 Infrastructure Design
	Turing Pi 2 Mainboard:
	Raspberry Pi Compute Module 4s:
	Cloud K8s Orchestration and Abstraction Layer:
	Cloud API:
	Relational Database:
	Distributed File System:
	Reverse Proxy:
	Served Interface:

	3.1.2 Interface Design
	3.1.3 Pipeline Design

	3.2 Description of Functionality
	3.3 Notes on Implementation
	4.1 Process
	Infrastructure Testing
	Frontend Testing

	4.2 Results
	5.1 Public health, safety, and welfare:
	5.2 Global, cultural, and social:
	5.3 Environmental:
	5.4 Economic:
	6.1 Review Progress
	6.2 Design Value
	6.3 Potential Next Steps


